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LINE-VORTEX THEORY FOR CALCULATION OF SUPERSONIC DOWNWASH

By HAXOLD MLRELS and RUDOLPE C.HAEFELI

SUMMARY

The perturbationjield induced by a line cortex in a wper-
wmic stream and the doumwash behind a wpersonic lifting
surface are examined to establish apprwt”matemethodsfor de-
termining the downwash behind supersonic wings.

Lifting-1ine methodsare presentedfor calcdaiing supersonic
doumwash. A bent lifting-line method is proposed for com-
puting the doumwashjteld behind swept w“ngs. When applied
to iriungular wings with subsonic leading edges, this method
gires results that, in generai, are in good agreement with the
exact linearized solution. An unbent lijting-line method
(horseshoe-rortexsystem) is proposedfor unswept w“ngs. This
methodis applied to determinethe downuwh behindrectangular
wings with aspect ratws of 2 and 4. Ercellent agreement with
exact linearized theory ia obtainedfor bothaspect ratios by plac-
ing the lifting line at the ?i-chord point. The use of lifting
lines therefore appears promising for obtaining estimates of
the doumw.eh behind supersonic wings.

WTRODUCTYON

Several methods, based on linearized theory, have been
presented for obtaining the dommvash behind supersonic
wings. These methods utdize conical superposition (refer-
ence I), doubIet distributions (references 2 and 3), or vortex
distributions (references 4 and 5). Each of these methods
has certain disadvantages. Conical superposition is re-
stricted to wings having plan forms composed of straight-hne
segmerd.a and is cumbersome for other than trapezoidal or
triangular plan forms. The doubIet and vortex distributions
app~y to arbitrary pIa.n forms, but provide integral express-
ions for dovrmvash that me generaIIy very tedious to eval-
uate. The compkxity of these expressions indicates that
there is a need for a straight-forward procedure for obtaining
reasomabIy accurate, if not exact, downwash solutions.

A Iogical approach to the development of a simplified
supersonic downvmsh theory is to derive the supersonic
mdogs of the line-vortex procedures that have proved
valuable in subsonic theory. Certain differences exist, how-
ever, between the properties of vortices in a supersonic
stream and vortices in a subsonic stream. Similarly, the
downwash fields behind subsonic and supersonic wings difTer
in certain respects. These differences must be investigated
before an extension of subsonic techniques is possibIe.

The present report, prepared at the A’ACA Lewis labora-
tory during the fall of 194S, has three main objectives:
(1) The clovinwash fieId induced by a supersonic Iine vortex
of constant slope is derived and discussed; (.2) the down-
-wash behind a supersonic lifting surface is examined a~d -
relat.ecl to the downwash field induced by Iine vortices; and”
(3) Iifting-line methods for computing dovrnvra~ are pre- ““
sent ed ancl cahmkt ions based on these methods are compared
m-ith the exact Linearized solutions. Zero-thickness tigS .=
(lifting surfaces) are considered throughout.

7XI130RY

GEXERAL VORTSX-FIELDREL.4TIOXS

The equations re~at ing velocity and vorticity clistributions
in a slightly perturbed supersonic stream are derived in
references 4 and 5. These relations are summarized in the
follo~ing section. The vwlocity field is assumed to consist
of a major supersonic free-stream veIocity U (taken in the
positive z-direction) PIUS small perturbation velocities U, u,

and w such that the Linearized equations of motion are
applicable.

Three-dimensional vortex fieId.-The -reIocity field in
~ector form is

~=(-cT +U)7+ O;+”WF (1) -

(All symbols used in this report are defined in appendix A.)
The -rortex vector field ~ is deflnecI as the curl of the velocity
vector. Thus

.-

;=TX;

= ~:+ q~+ f~ (2)
where —.

~=($–$)

‘=(%-%’)

)
~=(g–!$

Vortex Lines are lin= that are tangent at aLl points to the
local vortex vector and are determined from the equation

dx dy dz—.—. —
t~f
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The following integral expressions for the perturbation
velocities induced by the t.hme-dimensional vortex field
are presented in reference 4: .-

,s!2 ..-

(4a)

“=-z~ ““’4b)”
“=-+~” “-(4C)”

where
Xo=x-xo

Yo=y-yo

Zo==z-zo

The subscript o indicates a variable of integration. The
i~tegration “is conducted over. the volume V included in the
forward Mach cone from the point x,y,z; that is,

The symbol I designates the finite part of ~ dhrer-
gent integral. (See reference 4,6, or 7.) The procedure for
obtaining the finite part is systematized in reference 7 as
follows:

The. integrals in equations (4a) to {4c) me of the form

I= s“47.)&.aZ1(a.—2=.)3’2(5)

The upper limit in equation (5) corrisponcls to limits on the
klach cone in equations (4a) to (4c). The finite part of this
integral is

=–J(X,)–C
where

(6)

(7)

The term J(xO) is the indefinite integral of equation (5)and
J(XI j is the indefinite integral evaluated at the lower limit.
The justification for this procedure is presented in references
4, 6, and 7. Finite parts are treated in a manner similar to
that for ordinary integrals. The rules of addition, differ-
ential tion. under the in tkgral sign, transformfi~ion of vari-
ables, and integration by parts apply.

Vortex sheet,—If vorticity exists as a surface of velocity
discontinuity in the 20=0 plane, outside thk plane & q,

and ~ are all zero, but in the ZO=O plane ~=0, whereas
.$and q as-e infinite. The limits

are finite, however, and arc given by (refcrcncc 5)

[’=?), -u.

}
(8)

V’=UT—UB

The perturbation ve]ogities .j.nclumd by the vortex shed. me.
obtained by substituting equation (8} in equations (4a) to
(4c). Ig particular, the vertical-llerturbhtio[l-\’clocit.y field
(upwmh) is given by

‘=-WT%-=” ‘-(!I)
The a.ren of iutegm tion S inchdes d [he vort icit.y in the
forward Mach cone from x,y,z.

Line vortex, —The vortex lines through ill points on an
infinitely small closed c.urvc bound a vortex ‘rhlh” Tho
circulation

K= rdu

(where i= (p+ #+ f~’ls is the rcsultimt vorLiciW nnd u is
the infinitesimal crossscctional area of the Lube) is constunt
a.t all points along the tube. The vortex-vector components
at any point, ill”terms of the differcmt.inl diskncc dl~along Lhc
vortex tube, are

The elemental volume is dx, dy, dzo= a all,. A line vorlcx is
generat:d by allowing the cross section of the vorks tube LO
approach zwo while mm,intaining w constant. TIN upwmh
induced by such a line vorkx is found by substiLut.ing the
preceding expressions into equation (4c), which yields

. “=_gJj-=pii (10)

where the integration is conducted along the portion of t~kti
line vortex within’ the forecone from it,y,z.A lino vortex
cannot terminate within a fluid flow field but musL either
form a closed curve or extend to infinity or to a boumhu$ of
the field.
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UPWASHINDUCEDBYLINEVORTICES

Complicated velocity fields can be generat.ecl by the linear
superposition of relatively simple fields. It will therefore
prove useful for subsequent developments to determine the
upwssh field induced by line vortices of constant slope.

line vortex of constant slope and st.rength,-The up wash
at x,y,z due to a line Tort ex of constant slope m and stren@ K,

intersecting the forward Mach cone at. xu,y~ (fig. 1] is
(from equation (10))

The integration is performed in appencIix B and yiekls

The fide part, of the integra.1 in equation (11) is obtained
by substituting the lower Iimit into the indefinite integra~
(appenck B). A’o contribution appears from the upper
knit. By a translation of coordinates, the upwash due
to a line vortex from rl,yl that intersects the forward Mach
cone at xh,~a (~. 2(a)) is found to be

K (1”1–mS”J(fi2nzY, -A”J
‘=—z 2-J(YI

(13)
—Tnxl)’+(l —/9%n’)z’l

By superposition (fig. 2) ‘of a posikive line vortex K from
Xl,yl and a negative vortex —K from X2,312,the upvmsh due
to a Iine-vorte.. segment not intersecting the forward Mach
cone is

2T [G,(m)– G,(m)]U9=L (14)

where the notation

u

v ‘---Forecom frace in
ze =O done,

X-X. =p~(y-~.ja_=~

(x, g,z)

FmGrmI.-Geometric relationsfor determinationof upwrsh induewfby l!ne vortex.

(11)

is used. The subscript for G indicates the appropriate
subscripts for X, Y, Z, r, and m.

Equation (14) applies for any line vortex of tinstant
strength and slope. The circulation K is positive when the
vortex -rector is in the direction of integration. ‘When “’”
the Iine ~ortex intersects the forecone, the correspon~
Emit- (infinite G*(m) term) is neglected by application of the
finite-part concept.

-.

(Q)
(Z,gz)

I
r Ltii of va-fex

etreng?h -K

X,2.

(%,g,z)

1
r

X,x.

(c)
(x,y,z)

Line vcx+ex of ““
‘@ren@h u

(a) Limevortexfrom (ZI,HI).
(b) Line vorkx horn Cm,yi).

(c) Lfne vortexfrom 6WI) to (zr,w).

FIGUBE 2.-Sup&position for obtainingLIPWAIinducedby
Ifne-vortexsegmentIrorn@I,JI)to hvJ.
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Line vortex of constant slope but varying strength,—~ine
vortiem may coincide to form a resultant line vortex, the cir-
culation of which is the sum of the strengths of the superposed
components. The general line vortex is then one of variable
strength K ulong the line xO——zO(gO)having the local slope
mo=dyJdx,. The upwash induc.cd by the segment from-
x, ,Yl to X2,y2 may be written

. ..—

(16)

TIM evaluation of equation (16) is generally tedious. For
the particular case of constant. slope, however, this equation
may be integrated by parts to yield a useful expression for
up wash. Inasmuch as =

_pZ(YO- moX,)=d[G~(m)l . . . .
meres dy.

the integration by parts gives

The term KOIGo(m)]is disregarded at a limit corresponding
to a point on the forwa.rcl Mach cone.

Equation (17) is a generalization of equation (14) to ac-
count for varia tiom in strength along a line wortex of constant
slope.. Both equutions are gf fundan~ental importance be-
cause appropriate distributions of such line vortices will be
used to simulate a-supersonic lifting surface.

Gharaoteristios of upwash field due to supersonic line
vortex.—

1. .h@niie line vortices oj constant’ strength and slope.
An infinite line vortex inclined supersonically (lf?m\>l) LO
the free stream is shown in figure 3(a). Because both limits
in equation (14) “are neglected, the upwash induced by this
line vortex is zero. ‘Ilk result agrees with the indications
of oblique-airfoil t,heory because the perturbation velocities
are zero downstream of the envelope of the lMach cones from
the trailing edge of a two-dimensiomd airfoil inclined super-
sonically to the free stream.

The infinite line vortex along the line (y,–yJ =m(x,–~,)
(fig. 3(b)), inclined subsonically (1/3ml<1), has one limit that
intersects the forward Mach cone, whereas the other extends
h infinity. The upwash for OS&n< 1 is

where Z1,yl is a point on tlj~ line vort~. T~e_..upwwJl is
infinite along the line sort ex. For m=O, equation (18)
becomes

Y,‘=&”Y?+z’ ”--“-’“ -- --; (19)

which is identical with the expression for upwash due to an

Mn.ite vortex parallel to the strewn (along 1110line y.==yJ in
an incompressible field.

These results indicate thut t.hc bchuvior of the infiniLa
supersonic line vorte.. for l@zlZ 1 is eon~pletdy diflcmmt
from that of the incompressibkfknv vort.m. Whvn l13ml<l,
however, both vorLices have simikw upwash propert ics in tho
vicinity of the vortu lino t-ml arc, in ftict, idcmtirrd for
m=O. _“

2. Bent line vortices. The up wash duc to a bcu~ Iinc
vortm (fig. 3(c)) .of constant strength is

–~ [GJnt-)–G,(m+)] ‘
‘—27’

(20]

wb ere in- land VZ1*designate the alopcs of the line vortex
before and after the bcml aL Zl,yl. The km rl appears as
a factor in the denominator of equation (2o) so that the
upwash &sist.sonly in the af tercone from xl,yl and is infhdtc
on the cone surface (except in the z= O plane). This idh~ita
value of upwash is not to k confuscxi with the infki Ly intro-
duced at the intersection of the line vortex with the forward
Mach cone, which is eliminated by application of the fild.c-
pa.rti coticept.

Iu

1=Y, Y.

a-, X*

(a) (’z, y, z)

[%Y*)j ,,r, Yo-yt”mf=a-d

{
L’

rI/!

x, x.

(b)

I.U

rY,v.
.’

,.’
,

z, x.

b) [x, y, z]

(a) I.ridniteline vortexinclhed supersonicallyto ho stramr.
(b) InMte llne vortexInched subeonieellytuho stream.

(c) Bent lho vortex.

lWfURE 3.—TYPIesl Iinovortices.
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LINEARIZEDSUPERSO!SIC-WING-TFIEOEYRELATIONS

The perturbation velocities on supersonic Iift.ing surfaces
(zero-thickness wingee). have been evaluated for a large
variety of pIan forms. (See, for example, references 7 to 9.)
Those results wiII now be utilized to determine the vortex
field generated by a lifting surface.

Velocity potential.-If the boundary conditions for a lifting
surface are specified in the z= O plane, the u and v velocities
are ant.istiymmetric and the w velocities are symmetric about
this plane. Thus the velocities on the top and bottom sur-
faces of the z=O plane are related by

The discontinuities in u and v constitute a -rortex sheet.
Because the flow is e-rerywheie irrotat.ional, except. across
this sheet, a. perturbation-velocity potential @can be so de-
fined that

(22)

=W dx+v dy+w dz J

The undisturbed flow field a.heacl of the wing is considered
to be of zero potential. The boundary conditions require
that. u~=u~=O off the wing (antisymmetry of u and zero
lift off the wing). The poteutial in the z= Opla.ne may then
be obtained by integrating along lines of constant y

where X1is the equation of the leacling edge as a function of y.
From equation (23) it may be concluded that

1. Everywhere in the z=O plane except behind the wing
leading edge &=@,=O.

2. At a given span station, or ancl ~~ remain constant. for
aII values of z downstream of the trailing edge.

Liies of constant potential for rectangtdar and tria.nguIar
wings are shown in figure 4.

Vortex lines .—The equation for the Tort ex Iines (from
equation (3)) is

q’ dx—~’ dy=O (24]

When the foUowing expressions (from equations (8], (21),
and (22)) are substituted

/ .,
.“ /.

,,’

,.’
,,

,.‘
,,

,.’
$%--(5,=0

.
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‘. ,,
‘. .’

‘. “
. .’
,“.

,,’ ‘. .# ‘.
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“-q, “ ..,.
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q? “-pg =0 ‘

-Linesof
constonf . .
pa fenfial

.

,’
.’

.’
.’

ii = -pa
m tan t

(b)

(a) Rectanguhrwirg.
(b) Triangularwing.

FIGCRE 4.—Lfnes of constantpotentialforrectamgiarand trfonguk wings.

the equation for the vortex Iines becomes

Comparison with equation (22) shows that equation’ (25]
represents lines of constant potential. Thus the ~ortex
lines coincide -mith the lines of constant potential in the z=O
plane.

Circulation.— The circulation imduded between two points
X1,Y1 ancl x~)y~on a wing is given b

$K= udx+ody+wdz (26)

The path of integration is arbitrary except that the path
shoulcl cross the z= O plane onIy at the two specified points.

If the
of the

integral is taken along the top and bottom surfaces
2=0 plane,

‘(h’,2–@T, l)+(hs l–@B,2)=f%-”Adh (27)

dere ~o equh C&—&Zfind represents the j~p h potential
at the point. The quantity A@ is, in fact-, the doublet
strength (reference 2), so that the net circulation between
two points equak the difference in the doublet strength
between those points. The equivalence of a doublet dis=.-
tribution and a vortex distribution indicates that the flow ,.
about a Iifting surface can be calcrdated on either basis. __
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Circulation and lift.—The lift per unit span is given
chordwise integration

w)=:Puf’(cP,B––G. 2’)~z

ADVISORY COMMItiEE FOR “AERONAUTICS

by the

(28)

.4fter substitution of the linearized values for pressure co-
efficient

~,, B=_2y__;g$3 ........... .........

and integration, equation (28) becomes, because ArpJ=O,

L(v)= PUA4, (29)

The factor A#~is the circulation included between the leading
and trailing edges at the spanwise station under consideration.
When this circulation is designated I’, equation (29) becom-ti

L(~)=PZ7r

which is the fmnilia.r incompressible-fkm

dr_.d(+T–4a), .,
dy dy

=(0.– %),

=-(~’)t

~30).

relation. Also

(31)

Equ;tion (3I ) rela,tcs the shed vorticity to the rate of change
of spanwise loading.

APPLICATIONS TO C!ALC~”ATIONS “OF SUPE-RSO”NIC .“
DOWNWASH

The vertical perturbation velocities clue to a supersonk line
vort~. of constant eIope have been presented in a form that
ptirmits analytical or mechanic.al evahlation (equations (14)
and (17)). The vortex distribution associated with a
lifting surface has also been discussed. These reIations will
bc used to develop exact and approximate methods for calcu-
lating downwa.sh behind lifting surfacti at supersonic speeds.

DOWNWASHANINFINITE--DISTANCEBEHINDfiNG

The vertical-perturbation-velocity field behind a super-
sonic lifting surface “(from equation (9)) is

where the integration over the plan form is designated by
S9 and over the wake by SW. As x becomes inhite, XO
also becomes infinite in the iutegra.1 for the bound (plan-
form) vortices. This integral then becomes zero becauso
X, is of higher order in the denominator than in the numer-
ator. Thus, only the integration over the trailing vortex
sheet contributes to the vertical perturbation velocities at
infinity. The trailing vortex sheet may be considered to

consist of elemental vortices of infhkit.e Imgth along
y=constlant lines, each having the strength

dK= ~’ dy.= –~
dy.

dyO. The verticrtl perturbation velocity aL

a ,V,Z due to the elementnl vortex along y=yo is, from cqua.

so that the vertical-pert,urb ation-velocity field
given .by

. . . . ~—.

at infinity is

(33)

where 6/2 is the semispan. The velocity MI oldi~inrd from
equation (33) is identical to that induced by u subsonic wing ~
with the given span Ioa.cling. The velocity M-i aL infinity
is thus independent of Mach number (cdu[~ing the irdhwncc
of Mach number on dI’/dyO). This rcsulL has kn derived in
references 1 ancl 2 by other methods. ‘I%e cvahmtion of
equation (33 ) is relatively simplo and may k used Loapproxi-
mate the downwash sevcrd chords behind a supcwsonic wing.. ----- ..-. . ..—

REGIONSOFINFINITEDOWNWASH

Approximate solut.ions may modify or introduce singu-
hxrities in the downwash field. It is therefore of interest to
establish the regions for which Linearized theory imlica tcs an
indnit.e downwash.

Infinite downwash in z= O plane --- -The vmticrd pmt.urba-
tion velocities in tho z= Oplane that e.xid MLinfiliitc distance
behind a wing having a discontinuity in dI’/dy@wiH fh’sLbo
considered. These veloc.ities arc determined from the
equation

(34)

The Cauchy principal value is required for points on tho
vortex sheet. For the part.icular case of tritmgulnr loading
(fig, 5(a)),

dr’ 2rm
~=n-

in the integration interval- ~s y~s O and

in tke interval 0< yo< ~ (I’fi is the circulat.ion at the uidspan].

When these values for dI’/dy,are substituted in cquat.ion (34),
the integral yields-

(35)
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(b)

M Trk@= load discriiutiom
(b) Elliptic load distribution.

FIGLTBE &-up~.h ~ z.0 p12neanidnite distancebf-hind
wingsof tr” and elfipticloading. ”

Infinite upvmsh exists along the Iiues y= +b/2; whereas
infinite downwash exists along the line y= O. These idlnite
vahws are due to the discontinuities in the span-rise vorticity
distribution and app~y for all points on these lines down-
stream of the wing tra.ihng edge. “

In general, if (d17/dyJ - and. (dr/d~J+ represent a dis-
continuity in the rate of change of spanwise loading at
station y=yl, infir& -rertical perturbation velocities dl
exist aIong y=yl downstream of the trailing edge. For
(dJ?/cZyJ-<(dr/dyJ~ irbite upwash w-all exist, and for
(d?i’/cZy,)->(dI’/dyJ+ tilte dowrmash will exist along this
Iine. Such discontinuities in dI’Jfya originate both at a
wing tip and at those points along a supersonic trailing
edge where the plan-form elope is dkcontinuous and the
local-wing-pressure coefficient is not equal to zero. This
discontinuity in vorticit.y may be verified by the methods
empIoyed in reference 1 for tiding the upwash and the side-
wash directly behind a supersonic trailing edge.

The discontinuity in shed -rorticity at the tips of an ellip-
tically Ioaded wing is a special case of the previously stated
rule governing infinite verticaI perturbation velocities in
the z=O pIane. For wing loading given by

the shed vorticity is

641 --=-_

and the vertical-perturbation-velocity field at infinity, in
the z= Oplane, is

Integration yields -.

I’m
‘w=——

b
for

IYI<;

and

()

~=— “ l— IYI
%—

/I &
for .

As indicated in figure 5(b), the vertical perturbation ve- ,
Iocity is discontinuous at y=+ 6/2, but is bounded for alI
points on the vortex sheet.

Infinite downwash on Mach cone from wing tip.—Refer-
ence 3 indicates k-finite verticaI perturbation velocities OQ
the downstream Mach cones from the tips of a triangular
wing. This result will ROW be extended to apply to any
wing tip formed by the intersection of a subsonic Ieading
edge and a supersonic trai.h.ng edge, provided that the slope
of the subsonic. edge is not zero at the tip (fig. 6).

The contribution to the mrticaI-perturbat.ion-velo~ity
field due to the bading of an eIementa.I vortex at the trailing
edge (fig. 6) is, from equation (20),

where

–1 XOYO
G, (O)=— r. m

(36)

The -rertica.l perturbation velocity at a point on the Mach
cone from thii tip, due to the bending of the vortices, is
found by integrating (along the trailing edge)
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‘J-J- ““”-‘“Y,Y.

‘kpersomc t.-oilingedge

, (X,y,z) + -ElemenfaT
vortex,

dk=-~ dye

Fmrnm tl.-’iflng tip formedby intersectionof subsonicieading
and super?mio trrdlirig plan-formedges.

Equation (37) in the expanded form becomes . .

J{lfJ [y,–(w) x] [521%-) Yo–.u ,+.w=——
27r r= [Yo–(?no-) x,]2+[l–13’ (?no-)qz

X. Y.

“1

1 dr’
— - dy,

l’02+& r, dyo
(38)

The limits of integration me ~oots of r., so that the “factor I/rO
is singular of order J; at the Iimits and the integraI is
improper (assuming (rn,-)VO.O# 0). The convergence of

the integral depends on the noture of d17/dy0at the limits,
Appendix C shows, however, that dI’/dy, is ak.o singular of
order )4 at the tip. The combined singularity causes
equation (38) to diverge at the upper Iimit and results in
logarithmically infinite .vmtical perturbation velocities on
the hfacb cone from the tip. The divergence.. is a conse-
quence of both the singularity in rfI’/dyoand the singularity on
the Mach cone from a bend in the elemental line vortex.
The infinite vertical perturbation velocities on the Wch
cone from the tip do not. appear in the z= O plane inasmuch
as equation (38) then reduces.. to

and the singularity due to ro is no longer present,

APPROXIMATEDOWNWASHSOLUTIONS

Several approximate methods for obtaining downwash
were considered. Methods based on a lif t.ing line seem the
most promising and are discussed in the following sections.
A bent lifting line is propcscd for determining the downwash
behind a swept wing md an- unbent lifting line (horseshoc-
vortex system) for determining the downwash behind an
unswept wing. These methods me applied to compute the
down-wash behind triangular and rectangular wings and
the results are compared with the exact linearized solutions.

A Iifting line concentrates the chordwisc lending into a line.
Thus the bound circulation is rcprcwntcd by a line sortcx
of variable strength (K= r=A&); whereas the t.rmiling-
vortex system maintains the same -rorticity ($’= —Jridvo)
but now’ originates at the line rathm than at the tmiling Nfgr.

Bent lifting line,—A lifting line ttpproximat ing the section
centers of pressure

seems to be a reasouablc rcpmscnt tit.ion of u swep [bark or
swept forward wing. In order to frwilittiLe downwasb
calculations, the line of section cent.era of prcasurc mm bc
approximated by two straight-line segments, each cwnncc ting
an end point to tho midpoint of the lirm. The result is a
bent Iifting line (fig. 7) of span b and cffwtivo Ad c.
(z-clistrmce between midpoint and end points of lifting linr}.

Iu ‘

\

I
:FLGURE 7.—Bent-lifting-linenf)proslmatkmkmswruthodi w[ng.

For a. $iveptback lifting line, the slopes at the midpoint tire

(mo-)vo=o= ~~,——

and . .

(mO~}Vo=o=&

Ttle vertical perturbation vclocit.ics
vortices can be determined from ccption (17) and yield

where the integration is conducted along W lifting Iinr
(figs. 8(a) and 8(b)). The wrticaI perturbation velocities
induced by the. trailing-vortes system arc obt rtirwd from

(40)
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The term G.(O) is as detied for equation (36) and the
integration is again conducted sdong the lifting” line. The
verticaI perturbation velocities fiduced by the complete
liftiug-Iine system (bound and trailing vorticeS) me then
the sum of equations (39) and (4o) and yield

(41)

The vaIue m,= (mo-)vO.Ois used for the integration interval

~=~y. SO and me= (m,~)ro.o is used for the interwd

o<y. <y*.

Equation (41) is the expression for the vertical perturba-
tion velocities behind a swept wing using the. bent-lifting-hne
approximation. This equation can ahio be considered as
derived from a superposition of a system of bent Iine vortices
of constant strength (equation (2o) ], as indicated iR figure 9.
The nonintegrid term of equation (41) is then the contribu-
tion of the bent Iine ~ort-ex of strength I’m; whereas the
integral term represents the contribution of the bent eIementaI

line vortices of strength &d$O dy~.

The iutegraI term of equation (41) ma-y be evaluated by
analytical or mechanical methods. When mechanical
methods are used, the singularities in the integrand must
be isoIated. SuitabIe procedures for isoIating the commonly
encountered singularities are as follows:

(1) Singularity due to intersection of jorward .lfach cone
with lifting line. The int-egrand in equation (41) is intlnite
at the intersection of the forvia.rd Mach cone and the lifting
Iine (for z#O). The contribution 6Wof the integral, for the
intervaI yb—casyo syh (fig. 8 (a) ), to the verticaI-perturbation-
-reIocity fieId may be written

fi43

(b)
(X,y, %)

(s) Intersectionof foreeonewith likfng line.
(h) Intersectionof foremnewith edgeof vortexsheet.

(c) Pofnt on vortexsheet.

FIGCBE S.—Improperintervalsof drmmmshintegrsl.

where q ia a convenient length. The first- integral in equation (42) is proper and may be mechanically
seconcl integral is, for O<j3 ma< 1,

for Pm.> 1,

evaluated. The

and for flm.= 1.. . .

where m. is the slope of the Iifting line at Ya. A similar pro-
cedure applies for the singularity at y.. The contribution
h of the intervaI y=<ya Sy.+ % to the dovrmvash at x,y,z
may be computed from the preceding equations by reflecting
the lifting Iine about the x-axis and then c.omput~r the con-

tribution of that interval to the do-wnw-ash at x, —y,z.
(2) .Mgularity in dl?/dyOat wiag tip. The verticaI per-

turbation velocity at. a point. the forward Mach co~e of which
..—

intellects the edges of the trailing vortm sheet (fig. S(b)) is
obtained from equation (41) by integration between the
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FIGUIZE 9.—Superposition of bent limevortices yielding bent-lifting-linerepresentationof
supersonicwing (equation(41)).

limits –~ <y,< ;. If d17/dyais sing.@ar at these limits, the

singularity may be isolated by a procedure similar to that
used in equation (42). Thus, the contribution to the vertical-
.pertmrbation-velocity field, from the integration interred

(43)

A similar procedure applies for the singularity at yo= –$.

(3] Singularityat points on vortex sheet. The Ca.uchy
principal value of the integral (equation (41)) is required
for determining the. vertical perturbation velocity at a point

Rys;.on the vortex sheet z =0, —3 For this case, when
.

the interval y– e<y,<~+ c’ (fig. 8(c)) is considered, the.
.. . .. .

contribution of the intcgrai to the vertical-perturbation-
velocity field is

If dr/dy. can be approximated by the Fist two terms of the
TayIor’s expansion

and e is sufficiently small that

?nJx!?–lm?= _ ~
(To–%x.)

equation {44) may be written

(45) ‘-

Inasmuch as dr/dy. is an odd function in y, for a wing
symmetrical abouL the midspan, dr/dy* is either discon-
tinuous or zero for y.= O. If dI’/dyo is discontinuous, tho
vertica.I perturbation velocities are infinite along this line.

Unbent lifting line. —The unbent lifting line (horewhoc-
vortex system) appears to be a reason~ble rcpreseniution for
an unswept wing. The use of such a lifting line considerably
simplifies the calculations.

The vertical perturbation velocities induced by an unbent
lifting line (along the y-axis) me obta.incd from equation (41)
by setting mo= co and are equal to

The singularities are isolated as follows:
(1) Singularity due to -intersection of jorward Mach cm

un”thl%jlingline.

where _

subdyo—=?sin- I
B /

~b-eb r 0 \ Xy;-y)

(2) ~i~gu.larity in dI’/dyoat wing tip.

(3) singularity at points on vortex sheet. The chordwise location of tho unbent lifting lino that will gi~w
the best. average agreement with the exact Zinetwizcd solution
is still to be dotwminwi. According to the. techniques used
in subsonic-wing theoryt an unbent. lifting line at. tho wing
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cent er of pressure shoukl be a good first approximation;
however, further imrestigation is required. It maybe pos-
sible to determine the best location for each gencd class of
phm forms by comparing the Lifting-1ine sohtion with” the
exact linearized solution for several representative pkm forms.

lIxamples and discussion.—A bent lifting line and an un-
bent lifting line wilI be used to obtain solutions for the down-
-wash in the y= O plane behind triangukr wings having sub-
sonic leading edges. The chordwise distribution of wing
loading suggests the use of the bent lifting Iine. The unbent
lifting line will be used for purposes of comparison. An
unbent lifting line also will be used .to compute the domnwash
in the y= O plane behind rectang@ar wings. The chordwise
location of the unbent Iift ing line giving the best average
agreemenh mith the exact linearized solutions will be noted
for both the triangular and the rectangular mingg. In order
to simplify the expressions, M= y~ (that is, 19=1) will b~
assumed.

The spanwise circulation clist.ributiog for a triangular

wing of span b and root chord c,, having subsonic (H
leading edges, is (from equation (24) of reference 2)

where E is the complete elliptic integral of the second kind

~thmod~~J1-@-) The c.irculati& at the midspan
r

and the rat e of change of circulation is

The expression for the vertica~ perturbation velocities in the
y=O plane, using the bent-lifting-line approximation of
figure 10(a), is

where (ma+)~0=0=~ Equation (47) is obtained from equa-

tion (41) and the properties of an e-ren function. The -rertica.l-
perturbation-velocity field behind an unbent. Iiftii line
having the same loading (fig. 10(b)) is, from equation (46),

. ;-section cen fers

c?. .“ ‘k.- Bent !iftirlgfine

.’

@’,-
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.’ ‘..
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.,’
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4
.’ ‘.-.‘ ‘., y,yo ; “.#

4 ‘“
x x. “.;;-,

line

-.

(b)

H
.. .’ ‘. - -unknt liftin9line .“.. –,,’ ..

...’ . y,go ,.”..‘“’:....
.’ ‘. .’,’ ... ,“

=,%..’

““( J

. ~(o,+j......
q.+ ‘. ~

.’ >: ‘..
.“ ,.”.. ..

.’ .’ .. ..
..

(c)

(a) Bent-Iffting-linerepresentationof triangnk wing.
(b) Uubent-lifting-linerepresentation of triaogtdorwing.
(c) Unbent-lifting-linerepresent9ti0nof rect.sngularwing.

Fmva~ 10.—Liiting-Iinerepresentationsof triangrdrarand rectrmgahrwings.

The spanwise circulation for a r&angula.r wing of aspect

[

4:”l~)+wl ‘-y”r =A&=-
-. - I—J

YO+cr—;

(49a)

and for O<y.< ~—c,

r= 2d~c, (49b)

Equations (49a) and (49b) were obtained from equation (20)
of reference 8. The wing is ihe.trat-ed in figure 1O(C). The-. —

b b.
rate of change of spa.uwisecirculation for ~— cr<ya< ~ 1s

I
dI’ 4LYlTcr

/

y.+-:
.—.— —

dy, u v ;—Y.
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The. vertical-perturbation-velocity field in the y= o plane
behind an unbent lifting line having this loading is

(50)

Mquation (47) was evaluated to determine the downwash
along the line y=O, z= O and along tile line y= O, z=O.1 6
for triangular wings with aspect ratios (2b/c,) of 1.6 ancl 3.2.
13quation (48) was. evaluated for the same wings at points
along the line y=O, ,s=0. Equation (50) was evaluated at
points along the line y=O, z=O for rectangular wings ~hth
aspect ratios (b/c,) of 2 and 4. The integrations were
mecha.nicdy performed for equations (47) and (50) and

/.0 1.2 1.4 f.t7 /.8.. 2.0 22

...

C%ord hehiAd qoex,~

(a)z=OpIane.

(b) z=O.Ib plane.

FKGCRE11.-Downwash in fI=Oplanebehindtriangularwing with aspectratio 2b/Gof 1.6
usingbent liftingline. M=~Z;

l! m! T
Y

‘x’.
I

IGIElCp ,,0 ‘.— -=-
1 .Fxocf iineur!zecfsoiufion ~ a’ ‘.

(reference2) 1
I----Kxoc f linearized

1+cl= -Ch>-%titic
term [equcztiorf(47))* I .!

‘ .6 I I I ‘1” I 1“1 I
T I 1 II I I I I I ~r I

~ .6 .

I I I I I __ . . . ---

I I ------ 1

Chords behind opex, ~p
,

(a)2=0 phme.
(b)2=0.1bfzlane,

FIGURE lZ-Downwash tn#=0 pkumLiehindtrIar@ar wing with MS rntlo Z41Gof 3.?. .
usfngbent ltft[ngline. .M-+Z

analytically for equation (48). The results rwc compured
ivith the exact linearized solutions obtained from rcfercnccs 1
to 3 in figures 11 to 14.

The bent-lifting:]ine solutions for the triangular wings arc
shown in--figures 11 and 12. The discontinuity in 1I1ocurves
for the z=O.1 b pIane (figs. 11(~) and 12(b)) dcsignatw
large ne&tive (upwash) values thuL bwxnnc infini(e on thu
Mach cone from the tip, M indicated in the discussion asso-
ciated with equation (38). The agrecmenL with tl.M exact
solutio~ is good for all points exccpL those within x chord
from the trailing edge. The correlation is unexpected
because .of the large contribution of the nonintqgral trrm of
equation (47). This term is associated wiLh tlw knding of
the lifting line at the midpoint, This bend wus mLificially
introduced. The agreement with the exact downwash
solutions, however, indicates thuL the bent Iif t.ing line is a good
average r~presentation of the Triangular-t.ype wing (at Imst
in regard to the downwush solution in the region of the iinc
y=O, 2=0). This method should give even bcttw agree-
ment when used to represent a mvep tback wing such as the
one represented in figure 7, because the bent lifting line wouhI
then mora..closely approximate the actuaI vorticity disf.ribu-
tion.

The unbent-lifting-line soIution for the triangular wings is
presented .in figure 13. The lifting line is plticcd at the
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%-chord point to give the best average agreement with the
exact linearized solution. (The center of pressure for these
wings is at the ~-chord point..) The agreement is not as
good as that. obtainecl with the bent lifting line and indicates
that the bent. line is more suitable for computing dovmrrmsh
behind trianatiar tigs. The smaIIer-aspect-ratio wing
(2b/c,= 1.6) is in better agreement with the exact Iinemizecl
solution because of the rapiclit.y with which the dovrrm-ash
approaches the asymptotic value at intin.ity.

The unbent-Lift.ing-Iine soIution for the rectangular wings
is presented in figure 14. The dovrmvash obtained with the
lift ing line at the )&chord point is in excellent agreement
with the exact Linearized solution. (The location of the
center of pressure is at the j$chord and I%I-chord points for
aspect. ratios of 2 and 4, respectively.) These calculations
suggest that the unbent lifting line is vreII suited for com-
put ~~ the downwash behind unswept supersonic wings and

f , , , , , , 1 r , t r. 1 1

3
1.0 L2 /,4 /.6 /.8 2.0 22 24 2-G

,Zn..CtiSbehind qnsx,~ . -

FIWP.E 13.–Domw@ dou he y.o,s=0 Jj+hd-gr ~ Lwg ~~nt (hOm.

shx) lifting line at $&cbordpoint. ..W=%JZ
●

[

- “~;:
——Exoc* linearized solution

(refZrence 1]
1.6- ‘-----Ch5enf -[f fing-line

so[ufiors(equufion(50))

t I I I I I I

1 d , , t 1 8 1 11 I

$ .d’ I I I I$ 7- 1

8 ,4 /

b t-, “,o-
-. —=

0 c%-
/.0 /.+f /.8 22 2.6 .30 34 38 4..?

that the best c.hordtie position for the unbent lift~~ Iine
is at or sIightIy downstream of the W@ center of pressure.

A more accurate estimate of the down-wash in the z=O
plane cIose to the trailing edge ma-y be obtained by judiciously
fairii the curve obtained by the Iine-vortex method to the
knovm value of down-ivash at, the trailing edge. At a
subsonic traiIing eclge satisfyhg the Kutta conclition,
—w/a LT is unit~-; whereas at a supersonic trailing edge,
—w/au can be computed by the method presented in
reference 1.

Linearized theory negIeds the effect on the downwash of
the friction -wake and the displacement and the distortio~ ___
of the traiIing vortex sheet-. An experiment cd program, __
such as that reportecI in reference 10 for wings in subsonic
flight, is ultimately required to determine the necessary
mocl.ifications to Iinea.rized theory that will result in good
agreement between theory and practice.

SUMMARY OF .A~~LYSIS A5JD APPL1CATIONt3

The perturbation field induced by a line vortex in a super-
sonic stream and the down-wash field behind a supersonic
lifting surface have been examined to establish appro.simate
methocls for the calculation of supersonic downvrash.

b infinite Kne vortex of constant strength and slope,
supersonically incIined to the free stream, induces no per-
turbation fieId. A subsonicaIIy incIined line vortex has
properties si.rdar to those of a vortex in an incompressible- -
flow fieId. Bends, in a line ~ortex induce idnite vertical
perturbation velocities on the surface of the downstream
~lach cone from the bend (except in the ,s=0 plane).

The dovnrrash field behind a supersonic lifting surface
ditlers from that behind a subsonic wing in several respects.
For a supersonic lifting surface, diicontinuities in shed vortic-
it.y occur at those points along a supersonic trailing edge
where the plan-form slope is discontinuous and the local
pressure coefficient is not zero. These &continuities Iead to
singularities in the do~mwash field in the 2=o plane. Also,
the vertical perturbation velocities are IogaritbmicaIly infi-
nite on the downstream Mach cone from a wing tip formed
by the intersection of a subsonic leading pIan-form edge and a
supersonic trailing plan-form edge.

A bent-Iifting-line method has been proposed for the solu-
tion of the clownwash fieId behind swept wings. TVhen ap-
plied to a triangular viing, this method gave resuIts that werg
in very good agreement with the ~xact Iinea.tized soIution for
points near the line y=O, .s=0 except, for points within ~
chord of the wing trailing edge.

An unbent lifting line (horseshoe-vortex system) has been
proposed for unswept wings. This method was applied to
determine the downwash behind rectan=gydar wings with
aspect ratios hfcr of 2 and 4. ExceIIent. agreement was ob-
tained for both aspect ratios by placing the lifting Iine ah
the %-chord point.

LEWIS FLIGHT PROPULSIONLABORATORY,
2JATIONALADVISORYCO~~I~TEE FOR AERONAUTICS,

CLEYELAND,OHIO? Aprd !29, 1949.
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AYJ?ENUIA A

SYMBOLS

The following symbols are used in this report:

ICartesian coordinate system

1

perturbation veIocitim

J
unit vectors

I

components of vortex vector (three-dimensional
field)

1

components ..cd~ortex v-ector Ixortex sbeeO . . .... . .....

wing span

line integration

lood wing pressure coefllcient

effcctive chord of bent .lif ting line’

root chord of svkg

tiorriplete “dip tic integral of second kind with

moduhw
J’-(+J

(Y,- m,x,)(p’?niY,–x”i)
GJ@=ri[(ri- ??@,)’+(1=/3!Tn?)Zl-

—1 xiI’4
a,(o) =-”

?’i (Y$+z?)
..

L(y) spanwise lift distribution. —.
hf free-stream Mach number . ,.
m slope of line vortex or lifting line

Tt = ~x:–/3’Y,’-/Yz? ‘“ ‘“‘“

s surface integration -
u free-stream velocity (taken in x-direction)

648

volume integration

x—x<

y–y$
“Z—zf

angle of attack

cotangent of klach angle, 1~

spanwise distribution of wing circulation

‘wing circulation at midspan

integration interval

circulation

free-stream density

perturbs tion-vclocit.y pobmtial

4T–4%
crms-sectional mea of vortex tube

resultant vortlicity, ($Z+TS+ fa)%

:finite part of divergent inir&il

Iine integrfd along closed curve

Subscripts:
a., b points of int.erscctiou of forward lltich cono with

Iine vortex, lifting line, or edge of vortm sheet.

b

B bottom surface of z= O plane
Cp section center of pressure

i 1,2, 3,... n points on vortex lines

1 plan-form leading c.clge

o vmiable of integrrtt ion

T -top surface of 2=0 plane.

t phm-form trailing edge

Superscripts:
— value of.. function at point of discontinuity

approaching from negative y-direction

+ value of function at. poinL of discontinuity
____approaching f~~m positive y-direction

Whml

Wlwl

..



APPENDIX B

UP~ASH INDUCED BY LINE VORTEX

The up-wash induced by the line vortex segment of figure I is

&=-g[J” ?-n*(y— m) dg!o
(11)

0 [(1 —@m2)zJo~+ .2?7@?ny— fc)y.+ myz-p~y~-fw)]afg

The upper limit is at the intersection of the Iine -rortex where
(yO=mxa) with the trace of the forward Mach cone in the ‘ J(o)=

2(y.+gJ

s=0 pIane [(z–zc)z–Bz(y–yo)n—@2#=O] and is therefore the (y.-?h)’l&Z
.-.

appropriate root of the expression appearing in the denomi- and

nator of the integmnd. The roots are c= lim
[

2 ‘(?/b) ~(yoj
ytigs ?!6– ?/0 1

—m(#?*?ny-x) +j37nl@f— “7?Kc)~+(l-#?*m92~~1)

[

=IiIn”2 ~(ya+yb—zyo)
y., yb=

(l–p%’) f“_’f’@a-y b)3’21fio–(ytz-y #<(ya-yo)(yb-%) 1=0
Thus

so that equation (11) may be rewritten

_ ~fil _~2my31*

w=~=~ “2)

r= -

2(y=+ &J
(B4)

f?2i?’iK(~– ~X) (?/C- ?h)21’fi

Substituting equation (B4) in equation (B2) and solving for
From equations (6] and (7), w yields - .-

(!/– ~@(B2~y-@
1~=–~(Q)–C

w =——
(B3) 2: (z*-j~y*=p’2’)’/*[(y– ?rzZ)’+(1-fl’?nqzq

(’5]
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APPENDIX C

LOADING IN VICINITY OF WING TIP

The nature of the loading in the vicinity of a wing tip
formed by th~” intersection of a subsonic leading edge with
a supersonic traiIing edge (fig. 6) is to bg deteminecl.

According to tiearized thcmy, UT in the region of i Sub-
sonic leading eclge is singular of the form

1
‘*=>=”””’ ““

where xt is the equation for the leading edge as a function of
~.. This relation may be cleduced from equation (11) of
reference 9. The corresponding Wing circulation is

(cl)

The derivative of equation (Cl). is

J(z,-z,)
dr “ dyo
~o=

~i=...,: ““ ‘..:,. (C2)

where (zt—xJ is the wing chord as a function of YO, How-
ever, (zt—zJ must be of the form

x~—ZJ=yo~(y.)] (C3)

(where ~(yJ]r@=O# O, m ) in order to satisfy t~~erestrictio~
that at the wing tip

(a) the chord is zero

(W- Q)VO=O=O

(b) the slopes of the leading and trailing edges are neither
equal

P(xi;x’)luo=o#o
nor in the fkce-stream direction

[d(xiix’’luo=o#m
650

Substituting equation (C3) into the dcnornimttcr of equa-
tion (CZ). yields

#W-zJ
d!?_ dy~ ““ ““ ~C4)

m– Wf(y.)1

Equation ‘(C4) indicates that dr/dyo is singular of order % at
vO=O for the wing tip of @ure 6.
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